Incremental Recurrent Neural Network Dependency Parser with Search-based Discriminative Training
نویسندگان
چکیده
We propose a discriminatively trained recurrent neural network (RNN) that predicts the actions for a fast and accurate shift-reduce dependency parser. The RNN uses its output-dependent model structure to compute hidden vectors that encode the preceding partial parse, and uses them to estimate probabilities of parser actions. Unlike a similar previous generative model (Henderson and Titov, 2010), the RNN is trained discriminatively to optimize a fast beam search. This beam search prunes after each shift action, so we add a correctness probability to each shift action and train this score to discriminate between correct and incorrect sequences of parser actions. We also speed up parsing time by caching computations for frequent feature combinations, including during training, giving us both faster training and a form of backoff smoothing. The resulting parser is over 35 times faster than its generative counterpart with nearly the same accuracy, producing state-of-art dependency parsing results while requiring minimal feature engineering.
منابع مشابه
Statistical Ltag Parsing
STATISTICAL LTAG PARSING Libin Shen Aravind K. Joshi In this work, we apply statistical learning algorithms to Lexicalized Tree Adjoining Grammar (LTAG) parsing, as an effort toward statistical analysis over deep structures. LTAG parsing is a well known hard problem. Statistical methods successfully applied to LTAG parsing could also be used in many other structure prediction problems in NLP. F...
متن کاملBootstrapping a neural net dependency parser for German using CLARIN resources
Statistical dependency parsers have quickly gained popularity in the last decade by providing a good trade-off between parsing accuracy and parsing speed. Such parsers usually rely on handcrafted symbolic features and linear discriminative classifiers to make attachment choices. Recent work replaces these with dense word embeddings and neural nets with great success for parsing English and Chin...
متن کاملDependency Parsing with LSTMs: An Empirical Evaluation
We propose a transition-based dependency parser using Recurrent Neural Networks with Long Short-Term Memory (LSTM) units. This extends the feedforward neural network parser of Chen and Manning (2014) and enables modelling of entire sequences of shift/reduce transition decisions. On the Google Web Treebank, our LSTM parser is competitive with the best feedforward parser on overall accuracy and n...
متن کاملLarge-scale, sequence-discriminative, joint adaptive training for masking-based robust ASR
Recently, it was shown that the performance of supervised timefrequency masking based robust automatic speech recognition techniques can be improved by training them jointly with the acoustic model [1]. The system in [1], termed deep neural network based joint adaptive training, used fully-connected feedforward deep neural networks for estimating time-frequency masks and for acoustic modeling; ...
متن کاملDiscriminative Training of a Neural Network Statistical Parser
Discriminative methods have shown significant improvements over traditional generative methods in many machine learning applications, but there has been difficulty in extending them to natural language parsing. One problem is that much of the work on discriminative methods conflates changes to the learning method with changes to the parameterization of the problem. We show how a parser can be t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015